Printed Circuit Materials

ASAHI KASEI EMD DFR SUNFORT™
AQ-209A

(FULLY AQUEOUS PROCESSIBLE DRY FILM PHOTO RESIST)

BASIC PROPERTIES AND PROCESS RECOMMENDATION

ASAHI KASEI EMD CORPORATION
SUNFORT SALES DEPT.

NISHI-SHINJUKU1-23-7
SHINJUKU-KU,TOKYO160-0023, JAPAN
CONTENTS

1. INTRODUCTION

2. STRUCTURE

3. FEATURES

4. BASIC PROPERTIES
   IMAGING RESOLUTION PROPERTIES

5. PROCESS RECOMMENDATION

6. SAFETY AND HANDLING PRECAUTIONS
1. INTRODUCTION

ASAHI KASEI EMD DFR SUNFORT™ is a dry film photo resist developed by our company with a combination of heretofore-developed technologies in photosensitive materials and plastics, for use in the manufacture of printed circuit boards.

AQ series is a fully aqueous type. The carrier film should be peeled off before developing.

SUNFORT™ AQ-209A is negative working and an aqueous processability dry film photo resist which is designed to develop completely in a mild alkaline solution such as sodium carbonate (Na₂CO₃) and strip in a dilute alkaline such as sodium hydroxide (NaOH).

SUNFORT™ AQ-209A is high performance photo resist in tenting/etching application and available in resist thickness of 20µm sandwiched between layers of polyester and polyethylene film.

2. STRUCTURE

Figure 1. Structure of SUNFORT™ AQ-209A

Film width: Customer size is available in widths ranging from 195 to 600mm in increments of 3mm.
Film length: 210m
3. FEATURES OF SUNFORT™ AQ-209A

(1) Supper high resolution and excellent reproductivity of photo mask after developing.

(2) Wider latitude of exposing and developing conditions.

(3) Good imaging contrast
   - Unexposed color: Green
   - Exposed color: Dark blue

(4) Polymerized resist is tough and has good etching resistance to etchants such as:
   - Ferric chloride (FeCl₃)
   - Cupric chloride (CuCl₂)

(5) During stripping, polymerized resist breaks up into small particles and is not soluble in a stripping solution.

(6) Excellent tenting capability of 20um DFR thickness
4. BASIC PROPERTIES OF AQ-209A

IMAGING RESOLUTION PROPERTIES (TEST CONDITION)

Base materials 1.6mm thickness, Grass-epoxy copper-clad laminate (35µm)

Copper surface preparation chemical etching CB-801 (MEC 50% 30°C)

Lamination Hot roll laminator (ASAHI AL-70)
Pre-heated panel temp. 50°C
Laminating roll temp. 105°C
Roll pressure 0.35MPa (as air cylinder gauge)
Lamination speed 2.0m/min

Holding time 30min (more than 15min) after lamination

Exposure 4.5kw super high pressure mercury vapor short arc lamp HMW-801 (ORC Mfg. Co. Ltd.)
50 - 90mJ/cm²

Holding time 30min (more than 15min) after exposing

Development Conveyorized spray developing machine
Developing solution Anhydrous sodium carbonate solution (1.0wt%)
Developing temp. 30°C
Spray pressure 0.2MPa
Developing time 32sec. (B.P.=16sec.)

Etching Conveyorized spray developing machine
Etchant Cupric chloride
Etchant temp. 50°C
Spray pressure 0.2MPa
Etching time 65sec. (Copper: 35um)

Stripping Conveyorized spray stripping machine
Stripping solution Sodium hydroxide solution (3.0wt%)
Stripping temp. 50°C
Spray pressure 0.20MPa
Stripping time 36sec. (L.P.=18sec.)
Our step tablet: Optical density from 0.50 to 1.80, D=0.05

(Our photo mask and step tablet for evaluating resolution)

Our photo mask for evaluating resolution (See figure 2)
<Result 1> Relation of exposure energy to step tablet

![Graph showing the relation of exposure energy to step tablet.]

Figure 3. Relation of exposure energy to step tablet of SUNFORT™ AQ-209A.

(Judgement of step tablet)
Step number is completing covered with dull luster. Judged by STOUFFER 21 step tablet.

(Note)
After the above evaluation, throw sample panels into the developer to see if there are any resist chips on the panel because incomplete polymerized resists sometimes stick to the conveyor roll.
<Result 2> Relation of exposure energy to resolution and reproductivity of developed line width. Figure 4 and 5 show the relation of exposure energy to resolution and reproductivity of developed line width.

Figure 4. Exposure energy vs. resolution (line width)

Figure 5. Exposure energy vs. reproductivity of developed line width (50µm line=2mil)

(Judgement of resolution)
The minimum size of developed line or space, which should not flow and be buried by using our photo mask for evaluating resolution. And the minimum resist pattern size is less than ±20% narrow or wide at the highest resolution line.
<Result 3> Relation of exposure energy to independent fine pillar’s adhesion and independent fine pillar’s space clearance after developing on Figure 6 and 7.

Figure 6. Adhesion of independent fine pillar after developing

(Judgement of independent fine pillar’s adhesion)
The developed independent fine pillar should not flow out and chip off.
The minimum pillar’s diameter is 5um.

Figure 7. Clearance of independent fine pillar after developing

(Judgement of independent fine space clearance)
The developed independent fine pillar’s space clearance should not be buried. The minimum clearance diameter is 5um.
5. PROCESSING RECOMMENDATIONS
Table 1 and 2 show representative processing conditions for **SUNFORT™ AQ-209A**. Refer them to select optimum conditions, which will vary by customer’s equipment.

Table 1. Processing recommendation from board preparation to exposure

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. <strong>Board preparation</strong>&lt;br&gt;1-1 Pre cleaning&lt;br&gt;1-2 Scrubbing&lt;br&gt;1-3 Drying by air-blower</td>
<td>Washing&lt;br&gt;Washing&lt;br&gt;Washing</td>
<td>Conventional cleaners or dilute sulfuric acid (5-10%)&lt;br&gt;The copper surface should be completely free from moisture, oil, heavy oxidation and contamination.</td>
</tr>
<tr>
<td>2. <strong>Lamination</strong>&lt;br&gt;2-1 Preheating the copper surface</td>
<td>Temp. of copper surface should be 40 to 70°C just before laminating.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-2 Roll temp.&lt;br&gt;2-3 Roll pressure</td>
<td>105 to 115°C&lt;br&gt;0.35 to 0.45MPa (as air cylinder gauge)&lt;br&gt;(ASAHI AL-70)</td>
</tr>
<tr>
<td></td>
<td>2-4 Speed&lt;br&gt;2-5 Hold time after lamination</td>
<td>1 to 3 m/min.&lt;br&gt;More than 15 min.&lt;br&gt;Less than 3 days</td>
</tr>
<tr>
<td>3. <strong>Exposure</strong>&lt;br&gt;3-1 Exposure energy&lt;br&gt;3-2 Hold time after exposure</td>
<td>60 - 80mJ/cm²&lt;br&gt;More than 15 min.&lt;br&gt;Less than one day</td>
<td>Super high pressure mercury vapor short arc lamp</td>
</tr>
</tbody>
</table>
Table 2. Processing recommendation from developing to stripping

<table>
<thead>
<tr>
<th>Item</th>
<th>Condition</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>4. Development</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1 Developing solution</td>
<td>Sodium carbonate</td>
<td>(1) Developing time should be adjusted by BREAK POINT=50-65%</td>
</tr>
<tr>
<td>4-2 Solution concentration</td>
<td>1.0 ± 0.2 wt%</td>
<td></td>
</tr>
<tr>
<td>4-3 Solution temp.</td>
<td>30°C</td>
<td></td>
</tr>
<tr>
<td>4-4 Developing time</td>
<td>32 sec.</td>
<td></td>
</tr>
<tr>
<td>4-5 Spray pressure of developing zone</td>
<td>0.1 to 0.2 Mpa</td>
<td>(2) Adding antifoam is recommended.</td>
</tr>
<tr>
<td>4-6 Rinse water temp.</td>
<td>Below 25°C</td>
<td></td>
</tr>
<tr>
<td>4-7 Rinsing time</td>
<td>32 sec.</td>
<td>(3) Supply and change of developing solution should be adjusted by the dissolved resist content (0.5 m²/dm³) in case of the 1.0 wt% solution.</td>
</tr>
<tr>
<td>4-8 Spray pressure of rinse water zone</td>
<td>0.1 to 0.2 Mpa</td>
<td></td>
</tr>
<tr>
<td><strong>5. Stripping</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-1 Stripping solution</td>
<td>Sodium hydroxide or potassium hydroxide</td>
<td>(1) Stripping time should be adjusted by LIFTING POINT=50-65%</td>
</tr>
<tr>
<td>5-2 Solution concentration</td>
<td>2.0 to 3.0 wt%</td>
<td></td>
</tr>
<tr>
<td>5-3 Solution temp.</td>
<td>50 ± 5°C</td>
<td></td>
</tr>
<tr>
<td>5-4 Stripping time</td>
<td>More than 36 sec.</td>
<td>(2) Adding antifoam is recommended.</td>
</tr>
<tr>
<td>5-5 Spray pressure of stripping zone</td>
<td>0.1 to 0.3 Mpa</td>
<td></td>
</tr>
<tr>
<td>5-6 Rinse water temp.</td>
<td>20 to 30°C</td>
<td>(3) Supply and change of stripping solution should be adjusted by the stripped resist quantity (1.5 m²/dm³) in case of 3.0 wt% solution.</td>
</tr>
<tr>
<td>5-7 Rinsing time</td>
<td>36 sec.</td>
<td></td>
</tr>
<tr>
<td>5-8 Spray pressure of rinse water zone</td>
<td>0.1 to 0.3 Mpa</td>
<td></td>
</tr>
</tbody>
</table>

(Note) Adjusting of break point and lifting point

1. Break point or lifting point should be set at 1/2 to 2/3 length of developing or stripping chamber.
2. Rinsing time should be more than 1/2 of developing or stripping time.
6. SAFETY AND HANDLING PRECAUTIONS

6-1. STORAGE RECOMMENDATIONS
(1) **SUNFORT™** should be stored only in cool (5 - 20°C) and dry (less than 60% humidity level) areas.
(2) **SUNFORT™** should be laid horizontally.

6-2. HANDLING PRECAUTIONS
(1) **SUNFORT™** should be taken out from a black film under yellow safe lights.
(2) Boards should be covered with black shield-film in case of more than 24-hour hold time after lamination.

6-3. SAFETY PROCEDURES
Take care of the following items; since unpolymerized photo resists contain acrylic monomer, which may cause irritation or allergic reaction to skin.
(1) In case of contact with skin or clothing, immediately wash with soap and running water. If unpolymerized photo resist or washout solution comes in contact with eyes, immediately flush eyes with plenty of water for at least 15 minutes and consult an oculist.
(2) Use with adequate ventilation during lamination.
(3) Not to use cover film (protective polyethylene) after lamination.

(Note) A developing solution (Na₂CO₃) and a stripping solution (NaOH,KOH) should be handled with much care. Wear safety glasses and impervious gloves when making these solutions, and providing maintenance for equipment.
DISCLAIMER OF WARRANTY AND LIABILITY.
All information in this publication is given in good faith and believed to be correct. ASAHI KASEI EMD CORPORATION nevertheless makes no representations or warranties as to its completeness or accuracy.
All information is supplied only on condition that the persons receiving it will make their own determination as to its suitability for their own purposes prior to use. In no event will ASAHI KASEI EMD CORPORATION be responsible for damages of any nature whatsoever resulting from the use of or reliance upon such information or the related product. Nothing contained herein is to be construed as a recommendation to use any product, process, equipment or formulation in conflict with any patent, and ASAHI KASEI EMD CORPORATION makes no representation or warranty, express or implied, that the use thereof will not infringe any patent.

NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR OF ANY OTHER NATURE ARE MADE HEREIN WITH RESPECT TO INFORMATION OR PRODUCT.